

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION I

J.F.K. FEDERAL BUILDING, BOSTON, MA 02203-2211

MEMORANDUM

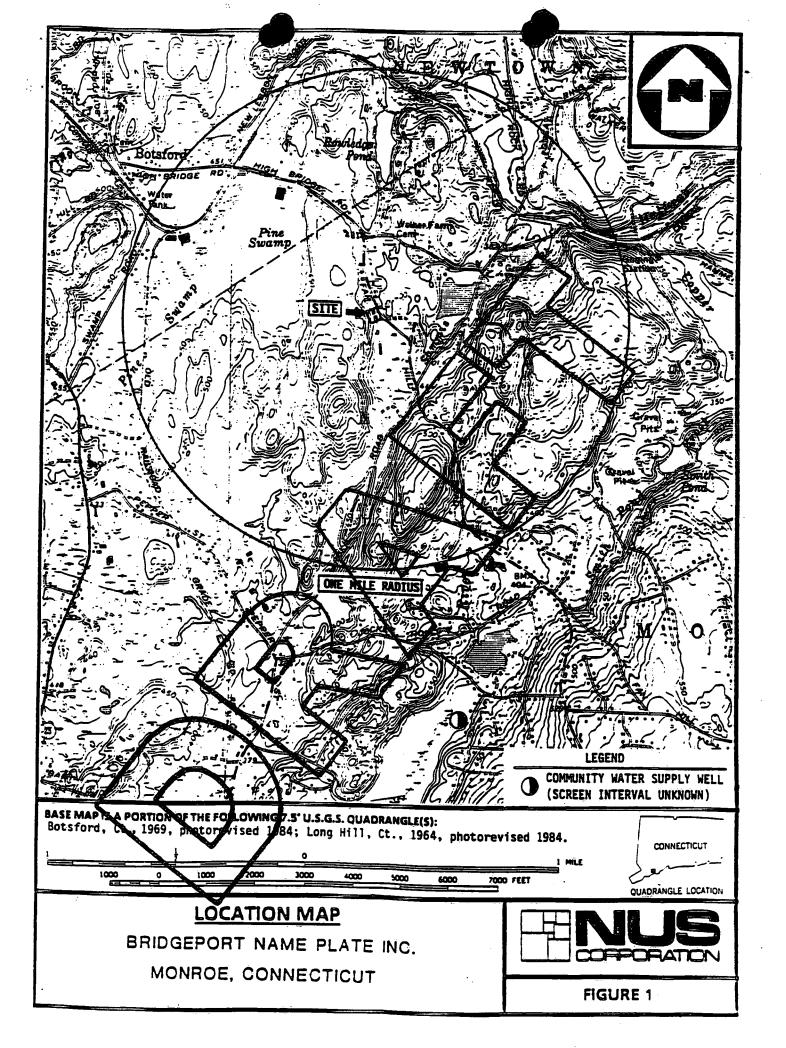
DATE: December 2, 1991

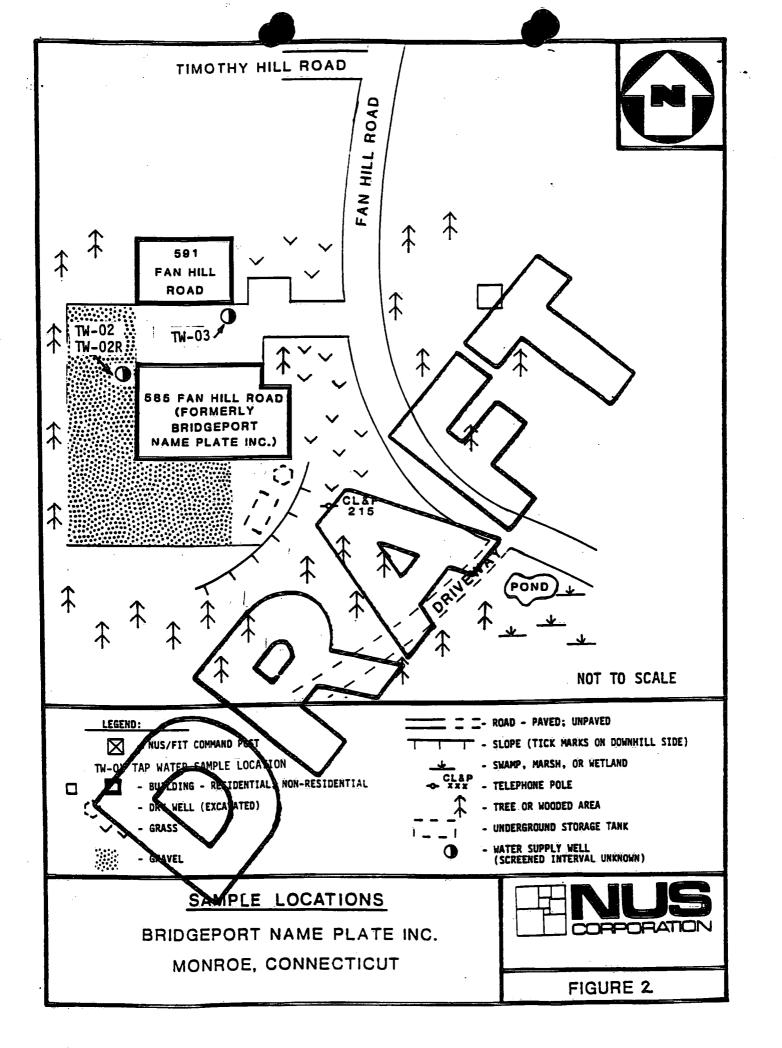
SUBJ: Final Sampling Effort Memo

Bridgeport Name Plate, Inc.

Monroe, Connecticut TDD No. F1-9105-01

Reference No. \$375CTY7I\$I CERCLIS No. CTD011184272


FROM: Jane Anderson


CT Site Assessment Manager

TO: File

Bridgeport Name Plate operated at 585 Fan Hill Road in Monroe, Connecticut from 1974 to 1988. During that time, the company manufactured signs, instruction plates, dials, and other similar items of aluminum and steel. Liquid waste from these manufacturing processes was disposed of in a drywell on site. The property is currently occupied by Horizon Engineering.

On Wednesday August 7, 1991, NUS/FIT personnel conducted a site reconnaissance and ground water sampling activities at Bridgeport Name Plate, Inc. (Figures 1 and 2). A total of five aqueous samples were collected, including one replicate and two trip Sample matrix, sample locations, sample numbers, sample source, and remarks are presented in Table 1. The reader is referred to Figure 2 for the sample locations. All samples were analyzed through the U.S. EPA Contract Laboratory Program (CLP) for Special Analytical Services (SAS) volatile organic and Regular Analytical Services (RAS) semi-volatile organic and inorganic analyses. A replicate sample was not collected for the RAS samples and an upgradient reference ground water sample could not be obtained; therefore, the tap water samples from 585 and 591 Fan Hill Road are compared to the final Federal Maximum Contaminant Levels (MCLs) for drinking water or the Contract Required Detection Limit (CRDL). Analytical sample results for all samples are enclosed in Attachment A.

Table 1 SAMPLE SUMMARY BRIDGEPORT NAME PLATE, INC. MONROE, CONNECTICUT

Samples collected by NUS/FIT on August 7, 1991*

Sample Location #	NUS/FIT Sample #	Sample Type	Sample Source & Location
Tap water sa	mples:		
TW-01	22990	Grab	Trip blank for quality control for SAS samples
TW-02	22991	Grab	Tap water sample collected from the well at 585 Fan Hill Road
TW-02R	22992	Grab	Replicate sample of TW-02 for quality control
Ť₩-03	23295	Grab	Tap water sample collected from the well at 591 Fan Hill Road
GW-01	22994	Grab	Trip blank for quality control for RAS samples

^{*} Sample locations depicted on Figure 2.

Compound/element	Highest Concentration Detected		Maximum Contaminant <u>Level</u>		CROL	
cis-1,2-dichloroethene	0.5J	ppb	NA		2	ppb
1,1,1-trichloroethane	0.9J	ppb	200	ppb	2	ppb
trichloroethene	0.7J	ppb		ppb	2	ppb
tetrachloroethene	5 J	ppb	NA		2	ppb
calcium	6610Ĵ	ppb	NA		77	ppb
copper	131	ppb	NA.		16	ppb
magnesium	772	ppb	NA		118	ppb
manganese	2Ј	ppb	NA		2	ppb
potassium	1680	ppb	NA		810	ppb
sodium	2240	ppb	NA		118	ppb
zinc	491	ppb	NA		12	ppb

Note: J - Quantitation is approximate due to limitations identified during the quality control review ppb - parts per billion

Four volatile organic compounds were detected in ground water samples, at concentrations ranging from 0.3J ppb to 5.0J ppb. Seven inorganic elements were detected in ground water samples at

This memo was finalized by EPA due to the expiration of the FIT contract.

The figures and tables should be considered final.

concentrations ranging from 2.0 ppb to 6,610 ppb.

ATTACHMENT A
CLP Analytical Results for aqueous samples
collected by NUS/FIT from Bridgeport Name Plate, Inc.
on August 7, 1991

TABLE 1
Volatile Organic Analytical Results

TABLE 2 Semi-volatile Organic Analytical Results

TABLE 3
Inorganic Analytical Results

TABLE 1 PAGE 1 OF 2 BRIDGEPORT NAME PLATE, INC. AUGUST 7, 1991 CLP SAS VOLATILE ORGANIC ANALYSIS GROUNDWATER ANALYTICAL RESULTS (UG/L)

TW-01	TW-02	TW-02R	TW-03	
22990	22991	22992	22993	
6586a-1	6586a-2	6586a-3	6586a-4	
8/7/91	8/7/91	8/7/91	8/7/91	*
8/27/91	8/27/91	8/27/91	8/27/91	
1.0	1.0	1.0	1.0	
BLANK	-	REPLICATE		
N.	· ···			
	-	.		
2 /				
3	\wedge			
			1.	
2 0,7				
·5 25 J	58 / UJ	63 N1	58 [.] UJ	
	.//	1 _		
	K	K		
	1 7		K	
2 🕻 /				
Ž J	//			
		<i>y</i> 1		
2		1	10. 5 J	
5				
5 #				
ž 📞				
Ž	<i>I</i>	0.9	₩. ∌	•
2				•
2				
2			5 1	
ž		•		
<u> </u>	١ ٨٠٠	1 0 7 1		
5	0.5 3	0.7 3		
5				
	22990 6586a-1 8/7/91 8/27/91	22990 22991 6586a-1 6586a-2 8/7/91 8/7/91 8/27/91 8/27/91 1.0 1.0 BLANK QL* 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22990 22991 22992 6586a-1 6586a-2 6586a-3 8/7/91 8/7/91 8/7/91 8/27/91 8/27/91 8/27/91 1.0 1.0 1.0 T.U BLANK REPLICATE 22 22 22 23 24 25 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	22990 22991 22992 22993 6586a-1 6586a-2 6586a-3 6586a-4 877/91 877/91 877/91 877/91 877/91 1.0 1.0 1.0 1.0 1.0 BLANK REPLICATE 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

TABLE 1, PAGE 2 OF 2 BRIDGEPORT NAME PLATE, INC. AUGUST 7, 1991 CLP SAS VOLATILE ORGANIC ANALYSIS GROUNDWATER ANALYTICAL RESULTS (UG/L)

Sample Location	TW-01	TW-02	TW-02R	TW-03
Sample Number	22990	22991	22992	22993
Traffic Report Number	6586a-1	6586a-2	6586a-3	6586a-4
ate Sampled	8/7/91	8/7/91	8/7/91	8/7/91
Date Analyzed	8/27/91	8/27/91	8/27/91	8/27/91
Dilution Factor	1.0	1.0	1.0	10
Remarks	BLANK	-	REPLICATE	
VOLAT LE ORGANICA COMPONID CR	Jr		-	
Berzene 2 Hexanone	2 5 R	R	R	R
2/Hexanone Methyl	255222	R	R	R
Bromotorm M M I	2			
1,2-DibromoetMane TetrachloroetWene	2		5 J	5 J
1,1,1,2-Tetrathloro thane 1,1,2,2-Tetrachloro thane	4.4.			
Chlorobenzene	2 9.4 J	<i>()</i>		
Ethylbenzene Styrene	2 2			
Xylene (total) Isopropylbenzene	2			
Bromobenzene 1,2,3-Trichtoropropane	2 /			
n-Propyl Benzene 2-Chlorotoluene	2			
4-Chlorotoluene 1,3,5-trimethylbenzene	2		` (
tert-butylbenzene 1,2,4-Trimethylbenzene	2			
sec-Butylbenzene 1,3-Dichlorobenzene	2		,	
1.4-Dichlorobenzene l	2		1 ,	
p-Isopropyltoluene 1,2-Dichlorobenzene n-Butylbenzene	2			
1.2-Dibromo-3-Chloropropanel	R	R .	R	
1,2,4-trichlorobenzene Naphthalene	2			
Hexachlorobutadiene 1,2,3-Trichlorobenzene	2		1	7

A blank space indicates the compound was not detected.
Quantitation is approximate due to limitations identified during the quality control review.
Value is rejected.
Quantitation Limit is approximate due to limitations identified in the quality control review.
Contract Required Quantitation Limit.
The non-detected sample results for all samples are estimated (UJ), due exceeded holding time.

CRQL

TABLE 2 Page 1 of 2
BRIDGEPORT NAME PLATE, INC.
AUGUST 7, 1991
CLP EXTRACTABLE ORGANIC ANALYSIS AQUEOUS ANALYTICAL RESULTS (UG/L) Sample Loca Li on GW-01 TW-02 TW-03 e Number 22994 22991 22993 c Repor AAP17 AAP15 AAP16 08/07/91 08/07/91 08/07/91 ate Extract 08/12/91 08/12/91 08/12/91 Date Anal 08/17/91 08/15/91 08/15/91 Dillecton ctor 1.0 1.0 1.0 Remarks BLANK SEMI WOLATILE BOMPOUND 10 10 10 Phenol bis (2-Chleroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzer 1,4-Dichlorobenzere 1,2-Dichlorobenzere 10 10 10 10 2-Methylphenol 2,2'-Oxybis(1-Chloropropage) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane 10 10 Nitrobenzene Isophorone 10 10 10 10 10 10 10 10 10 10 10 10 25 10 10 25 10 10 25 10 26 10 2-Nitrophenol 2,4-Dimethylphenol bis (2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline 10 UJ 4-Chloroaniline
Hexachlorobutadiene
4-Chloro-3-methylphenol
2-Methylnaphthalene
Hexachlorocyclopentadiene
2,4,6-Trichlorophenol
2,4,5-Trichlorophenol
2-Chloronaphthalene
2-Nitroaniline
Dimethylphthalate
Acenaphthylene
2,6-Dinitrotoluene
3-Nitroaniline
Acenaphthene Acenaph thene

TABLE 2 Page 2 of 2
BRIDGEPORT NAME PLATE, INC.
AUGUST 7, 1991
CLP EXTRACTABLE ORGANIC ANALYSIS
GROUNDWATER ANALYTICAL RESULTS (UG/L)

ample location	GW-01	TW-02	TW-03	
ample Number	22994	22991	22993	
rantic Report Number	AAP17	AAP15	AAP16	
ate ampled	08/07/91	08/07/91	08/07/91	
atesExtracte	08/12/91	08/12/91	08/12/91	
ate Analyzed	-08/17/91	08/15/91	08/15/91	
ilution actor	1.0	1.0	1.0	
emarks	BLANK			
EMI-VOLATILE COMPOUND CR	RQL -	·		
-Ni pophenol	25		-	
ibem of uran ,4-Din trotoluene iethylph balate	25 10 10			
iethylpheralate	10			:
-Chlorophenyl-phedylethe	10	'	ł.	
-Nitrophiline	10 25 25			
,6-Dinitro-2-methy cheryl -Nitrosodiphenylamin -Bromophenyl-phenylether	25	1		
-Nitrosodiphenylamin				
-Bromophenyl-phenylether exachlorobenzene			>	
entachlorophenol	25			
henanthrene	10 25 10			
nthracene	No I			
arbazole	19 1 1	<i>7</i>	7	
i-n-butylphthalate luoranthene				\wedge
tuorantnene yrene	100	1		
utvi benzvi phthal ate	10			
utylbenzylphthalate ,3'-Dichlorobenzidine	20 ~ //			
enzo(a)anthracene	10		y	
hrysene	10		7	
is(2-Ethylhexyl)phthalate i-n-octyl phthalate enzo(b)fluoranthene	10 1 J		1 1	7
1-n-octyl phthalate	10	1		^
enzo(p)Tluoranthene	10	1		
enzo(k)fluoranthene	10 10	I		
enzo(a)pyrene	10	Ì		
ndeno (1,2,3-cd)pyrene ibenz(a,h)anthracene	10			
enzo(g,h,i)perylene	10	· ·		
	'			
		1		

A blank space indicates the compound was not detected.

J Quantitation is approximate due to limitations identified during the quality control review.

CRQL Contract Required Quantitation Limit

TABLE 3 Page 1 of 1
BRIDGEPORT NAME PLATE, INC.
AUGUST 7, 1991
CLP INORGANIC ANALYSIS AQUEOUS ANALYTICAL RESULTS (ug/L) Sample Location GW-01 TW-02 TW-03 Samp Number 22994 22991 22993 MAW709 **MAW707** MAW708 Date Sample 08/07/91 08/07/91 08/07/91 Date And 09/03/91 09/03/91 09/03/91 of lution Factor 1.0 1.0 1.0 Remari BLANK INORGANIC ELEMENTS TDL (US/L) Atuminum 23.0 32.8 51.0 37.0 46.0 U 42.0 UJ 45.0 UJ 43.0 UJ **Antimony** Arsenic Barium Beryllium Cadmium 1.0 4.0 77.0 4.0 U 4.0 U Calcium 1850 J 4050 J 5.0 UJ Chromium .0 J Cobalt Copper P 16.0 6.0 U 131 107 Iron P 95.0 95.0 UJ 95.0 UJ 2.1 UJ 659 95.0 L Lead 1.0 118.0 2.0 0.20 27.0 810.0 Magnes i um P Manganese 2.0 J Mercury CV P P .2 U.i Nickel 5.0 UJ 7.0 UJ 2240 Potassium 1180 3 5.0 UJ 7.0 UJ 5.0 7.0 Selenium Silver 7.8 UJ 194 J 4.0 UJ Sodium 118.0 2130 Thallium 4.0 7.0 Vanadium Zinc P 12 20.0 U 491 Cyanide NA NA NA A blank space indicates the element was not detected.

J Quantitation is approximate due to limitations identified during the quality control review.

UJ Quantitation is approximate due to limitations identified during the quality control review.

U Instrument Detection Limit Analytical Method NOTE: Furnace AA ICP/Flame AA Cold Vapor ĊV Colorimetric

Not Analyzed